Asymmetric Synthesis of Axially Chiral 1,1'-Biphenyl-2-carboxylates via Nucleophilic Aromatic Substitution on 2-Menthoxybenzoates by Aryl Grignard Reagents

Tetsutaro Hattori, Nobuyuki Koike and Sotaro Miyano*
Department of Biochemistry and Engineering, Faculty of Engineering, Tohoku University, Aramaki-Aoba, Aoba-ku, Sendai 980, Japan

A practical method is presented for an asymmetric synthesis of axially chiral 1,1'-biphenyl-2carboxylates via the ester-assisted nucleophilic aromatic substitution reaction. Thus, upon treatment of 2-tert-butylphenyl 2-[(-)-menthoxy]benzoates with an aryl Grignard reagent, chirality of the leaving (-)-menthoxy group is transferred to the newly formed biphenyl linkage with up to 94% optical yield.

Although a variety of methods exist for the preparation of biphenyls by aryl-aryl bond-forming reactions, ${ }^{1,2}$ those which can be used for the asymmetric synthesis of axially chiral biphenyls are severely limited. \dagger Several papers have dealt with induction of axial chirality into the newly formed biphenyl bond by intramolecular coupling of the two aryl halves bonded to chiral templates. ${ }^{5}$ As for intermolecular coupling, asymmetric versions of the Ullmann reaction ${ }^{6}$ or the oxidative phenolic or non-phenolic coupling reaction ${ }^{7}$ have precedence for the synthesis of C_{2}-symmetric biphenyls. To date, however, the chiral oxazoline-assisted Meyers reaction in which the ortho methoxy group in an (o-methoxyaryl)oxazoline is displaced by an aryl Grignard reagent ${ }^{8}$ is the only one of practical utility for the preparation of axially chiral, unsymmetrical biphenyls. ${ }^{9,10}$ Thus, development of a new methodology for the construction of the atropisomeric biphenyl unit is a synthetic challenge because it occurs widely in biologically active natural products, ${ }^{11}$ and, more interestingly, these kinds of optically active biphenyls, ${ }^{12}$ as well as binaphthyl counterparts, ${ }^{13}$ have recently proved to be of potential importance as efficient chiral discriminators in a variety of asymmetric reactions and molecular recognitions.

We have shown in previous papers ${ }^{3,14}$ that an ester functionality substantially activates the ortho alkoxy group for nucleophilic aromatic substitution ($\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$); 2,6-dialkylphenyl 2 -methoxybenzoic esters (e.g. compound 1) react with aryl Grignard reagents to give the $1,1^{\prime}$-biphenyl-2-carboxylates in good to excellent yields. ${ }^{15}$ Herein we describe an extension of the ester-assisted biphenyl coupling reaction to a convenient synthesis of axially chiral biphenyls (see Scheme 2). ${ }^{16}$

Results and Discussion

Ester-assisted Asymmetric Biphenyl Coupling Reaction.-It is known that a minimum of three ortho substituents are required for an axially chiral biphenyl to have substantial stability toward racemization under ordinary conditions. ${ }^{9}$ We reported that synthesis of binaphthyls can be efficiently achieved in an asymmetric manner by the use of an enantiomeric menthoxy leaving group with isopropoxycarbonyl as the activating group (e.g. compound 2) for the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction. ${ }^{3}$ On the other hand, in the case of synthesis of biphenyls, 2,6-di-tertbutylphenyl protecting groups are required in general, in order to prevent the addition to the ester carbonyl by the Grignard reagent. ${ }^{15}$

[^0]

1

3a $R^{1}=M e, R^{2}=M e$
b $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{Me}$

Therefore, our initial effort was directed toward the preparation of 2,6-di-tert-butylphenyl 2-[(-)-menthoxy]benzoic esters $\mathbf{3}$ as substrates for the asymmetric S_{N} Ar biphenyl synthesis. The requisite $2-[(-)$-menthoxy $]$ benzoic acids 6 were easily prepared from the corresponding 2 -methoxybenzoates 4 by reaction with sodium menthoxide in dimethylformamide (DMF) followed by alkaline hydrolysis (Scheme 1). ${ }^{13}$ However, acid chlorides of compounds 6 failed to react with a 2,6 -di-tert-butyl-4-methylphenol. Several attempts to esterify 2,6 -di-tertbutylphenols with 2-[(-)-menthoxy]-3-methylbenzoic acid $\mathbf{6 a}$ in trifluoroacetic anhydride (TFAA) inevitably led to dementhoxylation to give the salicylates 7. Nucleophilic displacement of the methoxy group of 2,6-di-tert-butyl-4methylphenyl 2-methoxy-3-methylbenzoate 8 by reaction with $(-)$-menthoxide actually proceeded to give the desired ester 3a in miserable yield but accompanied by transesterification to regenerate the menthyl ester $5 \mathbf{a}$ as the major product.

As was stated previously, steric compatibility of the bulk of an ester alkyl moiety and that of an attacking Grignard reagent is crucial for the ester-assisted biphenyl coupling to proceed successfully with prevention of the well known Grignard addition to the ester group's carbonyl functionality. ${ }^{15}$ Detailed CPK and Dreiding molecular-model inspections suggested that the ester carbonyl of a $2-[(-)$-menthoxy]benzoic acid might effectively be protected from nucleophilic attack as a 2 -tertbutylphenyl ester because the bulky (-)-menthoxy and tertbutyl substituent should reside on opposite sides of the plane defined by the relevant benzoate ring due to steric reasons as schematically visualized by stereostructures 10A and 10B (see Scheme 5).

8
Scheme 1 Reagents and conditions: i, MentONa, DMF; ii, KOH, aq. EtOH ; then conc. HCl ; iii, TFAA

(+)-12aa $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
(S)-i+)-12ab $R^{1}=\mathrm{Me}, R^{2}=\mathrm{CH}_{2}$ OMOM, $R^{3}=R^{4}=H$
(S)-(+)-12ac $R^{1}=R^{2}=M e, R^{3}=R^{4}=H$
(R)-(+)-12bb $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OMOM}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
(R)-(+)-12bc $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}$
$(R)-(+)-12 b d R^{1}=R^{2}=R^{4}=O M e, R^{3}=\mathrm{Me}$
Scheme 2 Reagents and conditions: i, 4-PPy, PhH -pyridine; ii, $\mathrm{Et}_{2} \mathrm{O}$ (or THF)-PhH

The requisite 2 -tert-butylphenyl esters 10 were readily obtainable in good yield by treatment of acid chlorides 9 with 2-tert-butylphenol in benzene-pyridine in the presence of 4 -pyrrolidinopyridine (4-PPy) (Scheme 2). To our pleasure, the reaction of 2-tert-butylphenyl 2-[(-)-menthoxy]benzoates 10 with several Grignard reagents $\mathbf{1 1}$ proceeded nicely upon addition of a solution of Grignard 11 in diethyl ether or tetrahydrofuran (THF) to a benzene solution of an ester 10; the corresponding biphenyl-2-carboxylates 12 were obtained in good to excellent yields as well as with moderate to good stereoselectivity except in the synthesis of compound 12ac (see below) (Table 1). It should be noted that the tert-butylphenyl protecting group can easily be removed from the coupling products 12 to liberate the free biphenyl-2-carboxylic acids by treatment with potassium hydroxide in aq. ethanol at room temperature. Reaction variables were not necessarily optimized but were chosen so that the coupling reaction could proceed within a practical timescale while keeping the reaction temperature as low as possible. As shown previously, the biphenyl coupling reaction prefers less coordinating solvents, e.g. diethyl ether-benzene, rather than strongly coordinating ones, e.g. THF. ${ }^{15}$ In entries 2 and 4, however, THF was required to solubilize Grignard reagent 11b. Stoichiometry of the nucleophile 11 to the substrate ester 10 did not matter, as long as an excess of the former was applied; Grignard reagents 11 prepared from 2.0 mol equiv. of the corresponding aryl bromides were applied to ensure the complete use of the 2-menthoxybenzoates 10.

Determination of the Enantioselectivity of the Biphenyl Coupling Reaction.-The enantiomeric purities of biphenyl-2carboxylates 12 were determined by initially treating them with LiAlH_{4} in THF at room temperature to give the 2-hydroxymethyl derivatives, which were then converted into α-methoxy- α-(trifluoromethyl)phenylacetates (MTPA esters). Diastereoisomeric excesses (d.e.s) of the latter were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy at 60 MHz with the aid of the lanthanoid shift reagent europium $\operatorname{tris}(6,6,7,7,8,8,8$-hepta-fluoro-2,2-dimethyloctane-3,5-dionate) $\quad\left[\operatorname{Eu}(\mathrm{fod})_{3}\right] .{ }^{17}$ The d.e. values thus determined were cited in Table 1 as the minimum estimation of the enantiomeric excesses (e.e.s) of the biphenyl-2-carboxylates $\mathbf{1 2}$ taking into account the axial lability of $2,2^{\prime}, 6$-trisubstituted biphenyls and probable racemization during the sequence of treatments (see Experimental section). ${ }^{9}$

Determination of the Absolute Configurations of the Biphenyl Axes.-Although extensive stereochemical data, including chiroptical as well as X -ray crystallographical, have been accumulated for C_{2}-symmetric optically active biphenyls to allow their configurational assignment, ${ }^{18}$ the stereochemistry of unsymmetrical biphenyl atropisomers still remains to be elucidated.

The absolute configurations of the biphenyl coupling products 12ab and 12ac were determined by chemical correlation to $2,2^{\prime}$-bis(hydroxymethyl)-6-methyl-1, 1^{\prime}-biphenyl 18a and 2-hydroxymethyl-2',6-dimethyl-1, 1^{\prime}-biphenyl 20a, respectively (Scheme 3). The configurations of $2,2^{\prime}$-bis(hydroxy-methyl)-1, 1^{\prime}-biaryls such as compounds $\mathbf{1 8}$ could be determined by the axial chirality recognition method developed in this laboratory, which is based on the steric requirement for the formation of a 12 -membered cyclic diester, e.g. a compound 17, containing two sets of biaryl units joined by ester- CO_{2}-linkages between the ortho,ortho'-positions. ${ }^{5 d, 19}$

Compound (+)-12ab was hydrolysed to acid 13a, acidic treatment of which removed the methoxymethyl (MOM) group but caused cyclization with complete racemization to optically inactive lactone $14 a,{ }^{20}$ which was then hydrolysed to racemic 2^{\prime} -hydroxymethyl-6-methyl-1,1'-biphenyl-2-carboxylic acid 15a.

Table 1 Asymmetric synthesis of 1,1'-biphenyl-2-carboxylates 12

	Entry	$\mathbf{1 0}$	$\mathbf{1 1}$	Solvent a	Temp. $[$ time $(t / h)]$	Product $\mathbf{1 2}$	Yield ${ }^{b}$ (\%)	E.e. (\%)	Configuration

${ }^{a}$ Solvent: $\mathrm{A}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{PhH} ; \mathrm{B}, \mathrm{THF}-\mathrm{PhH} .{ }^{b}$ Isolated yield based on substrate $10 .{ }^{\text {c }}$ Room temp. ${ }^{d}$ Reflux. ${ }^{e}$ Suggested from mechanistic considerations (see text).

$(S) \cdot(-)-20 \mathrm{a} \quad R^{1}=\mathrm{Me}$
$(R) \cdot(-) \cdot 20 \mathrm{~b} \quad \mathrm{R}^{1}=\mathrm{OMe}$

vii

(S)-(-)-18a $R^{1}=M e$
(R)-(-)-18b $\quad \mathrm{R}^{1}=\mathrm{OMe}$

(S)-(-)-18a $R^{1}=\mathbf{M e}$
(R)-(-)-18b $\mathrm{R}^{1}=\mathrm{OMe}$

Scheme 3 Reagents and conditions: i, KOH , aq. EtOH ; then conc. HCl ; ii, $4 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}, \mathrm{THF}$; iii, KMnO_{4}, acetone-water; iv, SOCl_{2}; v, (S)-bi-2-naphthol, DMAP, PhH-pyridine; vi, $\mathrm{LiAlH}_{4}, \mathrm{THF}$; vii, $6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}, \mathrm{THF}$; viii, $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$

Oxidation of the hydroxymethyl side chain of compound 15a gave 6-methyldiphenic acid 16a. Treatment of the bis(acid chloride) of rac-16a with (S)-bi-2-naphthol allowed cyclization of only the (S)-16a-derived substrate to give enantiomerically pure cyclic diester (S, S)-17a. Reductive cleavage of diester 17a with LiAlH_{4} gave $2,2^{\prime}$-bis(hydroxymethyl)-6-methyl-1,1'biphenyl (S)-(-)-18a, the enantiomeric integrity of which was confirmed by ${ }^{1} \mathrm{H}$ NMR analysis after converting it into the bisMTPA ester. On the other hand, reduction of the carboxylic function of monoacid 13a followed by removal of the MOM
group via compound 19a gave diol (-)-18a. Consequently, the axial chirality of the biphenyl product $(+)-\mathbf{1 2 a b}$ was determined to be S.

Reductive removal of the MOMO group of monoacid (S)13a under neutral conditions, followed by reduction of the carboxylic acid function, gave the biphenylylmethanol $(S)-(-)$ 20a. On the other hand, treatment of the coupling product (+)12ac with LiAlH_{4} afforded the alcohol (-)-20a. Thus, the starting compound $(+)$-12ac should have the S axis as shown in Scheme 3. Determination of the absolute configurations of
biphenyl products 12bb and 12bc followed similar procedures as above (Scheme 3).

Scheme 4 summarizes the determination of the absolute configuration of biphenylcarboxylate (+)-12bd. In an intended bromination of the methyl side chain, treatment of carboxylate 12bd with N-bromosuccinimide (NBS) gave the nuclear bromination product preferentially. Then, compound 12bd was converted into dibromide 21, which was hydrolysed to carboxylic acid 22. Attempted direct oxidation of the hydroxymethyl side chain of compound 22 by treatment with potassium permanganate resulted in a complex mixture which contained the desired diphenic acid 26 but only in poor yield. ${ }^{21}$ Thus, carboxylic acid 22 was esterified to methyl ester 23, the 2^{\prime}-hydroxymethyl substituent of which was first oxidized to aldehyde 24 by treatment with pyridinium chlorochromate (PCC) and this was then subjected to permanganate oxidation to dicarboxylic monoester $\mathbf{2 5}$ followed by hydrolysis to diphenic acid 26.

The bis(acid chloride) of diacid 26 was cyclized with (R)-bi2 -naphthol to give cyclic diester 27 which should have (R, R)biaryl stereochemistry. This material was reductively cleaved to give diol $(R)-(+)-28$. On the other hand, LiAlH_{4} reduction of biphenylcarboxylic acid 22 gave diol $(+)-28$. These interconversions establish the axis of the ortho,ortho'-tetrasubstituted biphenyl (+)-12bd should be R.

Mechanistic Consideration of the Asymmetric Induction in the Biphenyl Coupling Reaction.-In our previous paper, the addition-elimination mechanism proposed by Meyers for the oxazoline-assisted $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction ${ }^{4.10}$ was modified to the esterassisted binaphthyl coupling reaction. ${ }^{3}$ Essentially the same model can explain the asymmetric induction in the biphenyl coupling reaction (Scheme 5). CPK molecular models suggest that the most strain-free conformers of ester $\mathbf{1 0}$ are those in which the carbinyl hydrogen (CHO-) of the menthoxy moiety is disposed toward the pertinent benzoate ring for steric reasons (10A and 10B). Since approach of an aryl Grignard nucleophile from the α-face of a conformer 10A may cause significant steric repulsion between the organomagnesium species and the (-)menthyl substituent (chelated complex 29A), approach from the β-face should be preferred, to form chelated complex 29B. A reaction sequence comprising phenyl migration to form σ complexes 30 followed by elimination of menthoxy to give biphenylcarboxylates 12 will determine the axial twist of the biphenyl linkage: Strong intramolecular ligation of the 2-methoxy (MeO) or methoxymethoxymethyl (MOMOCH_{2}) group to the magnesium centre seems to override the steric repulsion between the $6^{\prime}-\mathrm{R}$ substituent and the phenyl ring undergoing the substitution to give the coupling products 12ab, 12bb and 12bd via path a. On the other hand, a phenyl Grignard reagent lacking those ligating substituents (compound 11c) should prefer path b to give biphenyls 12ac and 12bc. Although rotational lability around the biphenyl axis of compound 12aa prohibited the assignment of its stereochemistry, the mechanistic arguments above strongly suggest that compound (+)-12aa should have an S axis.
Inspection of the results in Table 1 reveals some interesting trends concerning the apparent steric bulk of the ortho substituents on both reagents 11 and substrates 10. Judging from the yields of the biphenyl products, the apparent bulk of a MeO group seems smaller than that of a Me substituent (entries 3 and 5 compare the effect of the $6-\mathrm{Me}$ and MeO substituent of substrates 10, and entries 1 and 3 that of the $2-\mathrm{MeO}$ and Me substituent of reagent 11, respectively). It has been suggested that strong intramolecular ligation of an ortho MeO to a magnesium centre reduces the apparent steric bulk of a 2-methoxyphenyl Grignard reagent. ${ }^{15,22}$ The mediocre yield and poor stereoselectivity in the synthesis of compound 12ac

(R)-(+)-12bd
(R)-21
ii

(R, R) -27
(R) $-(+)-28$

Scheme 4 Reagents and conditions: i, NBS, BPO, $\mathrm{CCl}_{4} ; \mathrm{ii}, \mathrm{KOH}$, aq. EtOH ; then conc. HCl ; iii, MeI, $\mathrm{NaHCO} \mathrm{O}_{3}$, DMF; iv, $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; $\mathrm{v}, \mathrm{KMnO}_{4}$, acetone-water; vi, SOCl_{2}; vii, (R)-bi-2-naphthol, DMAP, PhH-pyridine; viii, LiAlH_{4}, THF
may be accounted for by assuming that steric hindrance and lack of ligating substituent retard the formation of a well assembled σ-complex 30.
In conclusion, a practical method, which rivals the Meyers procedure, ${ }^{9,10}$ is presented for the construction of axially chiral biphenyl structures in good to excellent yields and with reasonable stereoselectivity and predictable stereochemistry.

29A

path a
29B

30a

(R)-(+)-12bd

30b

$(R)-(+)-12 b c$

Scheme 5

Experimental

M.p.s were taken using a Yamato MP-21 apparatus and are uncorrected. Optical rotations were measured on a Union Giken PM-101 or JASCO DIP-4S polarimeter, and are given in units of $10^{1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. IR spectra were recorded on a Shimadzu IR-460 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AC-250T or JEOL JNM-FX60 spectrometer using tetramethylsilane as internal standard and CDCl_{3} as solvent unless otherwise stated. J-Values are given in Hz . Merck silica gel $60 \mathrm{GF}_{254}$ was used for analytical and preparative TLC (PLC). Silica gel columns were prepared by use of Nacalai silica gel 60 (70-230 mesh). Water- and airsensitive reactions were routinely carried out under nitrogen. Diethyl ether, benzene and THF were distilled from sodium diphenylketyl just before use. Other solvents for experiments requiring anhydrous conditions were purified by usual methods. Acetone ($2.5 \mathrm{dm}^{3}$) was treated with 2% aq. $\mathrm{KMnO}_{4}\left(150 \mathrm{~cm}^{3}\right)$ and conc. $\mathrm{HCl}\left(30 \mathrm{~cm}^{3}\right)$ at room temperature overnight
and then distilled through a Widmer distillation column. Commercial materials were used as purchased. 1-Bromo-2(methoxymethoxymethyl)benzene, 1-bromo-2,4-dimethoxy-6methylbenzene and methyl 2-methoxy-3-methylbenzoate 4a were synthesized according to the literature procedures. ${ }^{23-25}$

Preparation of 2-tert-Butylphenyl Ester 10a.-(-)-Menthyl 2-[(-)-menthoxy]-3-methylbenzoate 5a. Ester 5a was prepared by a similar procedure to that described in the previous paper. ${ }^{3}$ To sodium (-)-menthoxide obtained by the reaction of $(-)$ menthol ($56.3 \mathrm{~g}, 360 \mathrm{mmol}$) with $\mathrm{NaH}(60 \%$ dispersion in mineral oil; $14.4 \mathrm{~g}, 360 \mathrm{mmol}$) were added dry DMF ($50 \mathrm{~cm}^{3}$) and the methyl ester $\mathbf{4 a}(13.0 \mathrm{~g}, 72.1 \mathrm{mmol})$ and the mixture was stirred at $90^{\circ} \mathrm{C}$ for 10 h . After the excess of $(-)$-menthol had been distilled off $\left(66-70^{\circ} \mathrm{C} / 267 \mathrm{~Pa}\right)$, the residue was chromatographed on a silica gel column with hexane-ethyl acetate ($9: 1$ to $1: 1$) as the eluent to give menthyl ester $5 \mathbf{a}(14.3 \mathrm{~g}$,
46%) as an oil, $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1723(\mathrm{CO}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz})$ $0.77-2.74(36 \mathrm{H}, \mathrm{m}$, menthyl H), 2.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.85-4.22$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}), 4.75-5.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}\right)$ and $6.80-7.49$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

2-[(-)-Menthoxy]-3-methylbenzoic acid 6a. Ester 5a (11.5 g, $26.8 \mathrm{mmol})$ was boiled with $\mathrm{KOH}(7.10 \mathrm{~g})$ in a mixture of ethanol ($60 \mathrm{~cm}^{3}$) and water $\left(6.0 \mathrm{~cm}^{3}\right)$ for 10 h . After most of the ethanol had been evaporated off, the residue was dissolved in water and washed with diethyl ether. The aqueous layer was acidified by addition of conc. HCl to liberate the free acid, which was extracted with diethyl ether, and the extract was washed with water and dried over MgSO_{4}. After the solvent had been evaporated off, the residue was dried in vacuo to give acid 6a $(7.30 \mathrm{~g}, 94 \%)$ as a yellow oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3130(\mathrm{OH})$ and $1744(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 0.80-1.83(17 \mathrm{H}, \mathrm{m}$, menthyl H), 2.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $2.40-2.61(1 \mathrm{H}, \mathrm{m}$, menthyl H), $4.28(1 \mathrm{H}, \mathrm{td}, J 10.8$ and $4.1, \mathrm{OCH}), 7.16(1 \mathrm{H}, \mathrm{t}, J 7.7, \mathrm{ArH}), 7.39(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $1.0, \mathrm{ArH}), 8.01(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.7, \mathrm{ArH})$ and $11.5(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, OH).

2-tert-Butylphenyl 2-[(-)-menthoxy]-3-methylbenzoate 10a. Acid $6 \mathrm{a}(3.00 \mathrm{~g}, 10.3 \mathrm{mmol})$ was heated under reflux for 2 h in thionyl dichloride ($15 \mathrm{~cm}^{3}$) in the presence of several drops of DMF, and volatiles were removed under reduced pressure to give the chloride 9a.

The acid chloride 9a was dissolved in dry benzene ($15 \mathrm{~cm}^{3}$) and the solution was added dropwise to a mixture of 2 -tertbutylphenol ($3.10 \mathrm{~g}, 20.6 \mathrm{mmol}$), 4-PPy ($3.00 \mathrm{~g}, 20.2 \mathrm{mmol}$), benzene ($35 \mathrm{~cm}^{3}$) and pyridine ($4.0 \mathrm{~cm}^{3}$). Then the mixture was refluxed for 2 h . The cooled mixture was diluted with diethyl ether, washed successively with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}, 2 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and water, and dried over MgSO_{4}. After the solvents had been evaporated off, excess of 2 -tert-butylphenol was distilled off by use of a Kugelrohr ($70^{\circ} \mathrm{C} / 200 \mathrm{~Pa}$) and the residue was chromatographed on a silica gel column with hexane-benzene ($7: 3$) as the eluent to give compound 10a (3.70 $\mathrm{g}, 85 \%$) as an oil (Found: $\mathrm{C}, 79.7$; $\mathrm{H}, 9.0 . \mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{3}$ requires C, $79.6 ; \mathrm{H}, 9.1 \%$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1743(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz})$ 0.75-1.78 ($17 \mathrm{H}, \mathrm{m}$, menthyl H), 1.38 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}$), $2.37(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 2.40-2.58(1 \mathrm{H}, \mathrm{m}$, menthyl H), $4.22(1 \mathrm{H}, \mathrm{td}, J 10.4$ and 4.0 , $\mathrm{OCH}), 7.02-7.49(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.86(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and 1.6 , ArH).

Preparation of 2-tert-Butylphenyl Ester 10b.-This compound was prepared by a similar procedure to that used for the preparation of its analogue 10a except that (-)-menthyl ester $\mathbf{4 b}$ was used instead of methyl ester $\mathbf{4 a}$.
(-)-Menthyl 2,3-dimethoxybenzoate $\mathbf{4 b}$. 2,3-Dimethoxybenzoyl chloride prepared from 2,3-dimethoxybenzoic acid $(25.2 \mathrm{~g}, 138 \mathrm{mmol})$ was treated with a solution of (-)-menthol ($32.4 \mathrm{~g}, 207 \mathrm{mmol}$) in benzene ($250 \mathrm{~cm}^{3}$)-pyridine $\left(56 \mathrm{~cm}^{3}\right.$) in the presence of 4 -(dimethylamino) pyridine (DMAP) (20.3 g , 166 mmol) at room temperature for 1 h . After the usual workup, distillation under reduced pressure by use of a Kugelrohr $\left(110^{\circ} \mathrm{C} / 133 \mathrm{~Pa}\right)$ gave the ester $4 \mathrm{~b}(24.8 \mathrm{~g})$ as a pale yellow oil. The residue was chromatographed on a silica gel column eluting with hexane-ethyl acetate (95:5) to give an additional crop of ester $\mathbf{4 b}(4.20 \mathrm{~g})$ for a total yield of $29.0 \mathrm{~g}(65 \%)$, $\nu_{\max }($ neat $) / \mathrm{cm}^{-1} 1718(\mathrm{CO}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.75-2.36(18 \mathrm{H}, \mathrm{m}$, menthyl H), $3.88(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.72-5.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}\right)$ and 6.93-7.37 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
(-)-Menthyl 2-[(-)-menthoxy]-3-methoxybenzoate 5b. To sodium (-)-menthoxide obtained by the reaction of $(-)$ menthol ($12.0 \mathrm{~g}, 76.8 \mathrm{mmol}$) with $\mathrm{NaH}(60 \%$ dispersion in mineral oil; $3.00 \mathrm{~g}, 75.0 \mathrm{mmol}$) were added DMF ($70 \mathrm{~cm}^{3}$) and compound $4 \mathrm{~b}(16.4 \mathrm{~g}, 51.2 \mathrm{mmol})$ and the mixture was stirred at $90^{\circ} \mathrm{C}$ for 15 h . Distillation under reduced pressure by use of a Kugelrohr ($170^{\circ} \mathrm{C} / 67 \mathrm{~Pa}$) gave compound $\mathbf{5 b}(16.2 \mathrm{~g}, 71 \%)$ as a pale yellow oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1724(\mathrm{CO}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.77-$
$2.82(36 \mathrm{H}, \mathrm{m}$, menthyl H), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.07-4.47(1 \mathrm{H}$, $\mathrm{m}, \mathrm{OCH}), 4.72-5.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}\right)$ and $6.87-7.36(3 \mathrm{H}, \mathrm{m}$, ArH).

2-[(-)-Menthoxy]-3-methoxybenzoic acid $\mathbf{6 b}$. Ester $5 \mathbf{b}(11.0 \mathrm{~g}$, $24.7 \mathrm{mmol})$ was boiled with $\mathrm{KOH}(6.50 \mathrm{~g})$ in ethanol $\left(60 \mathrm{~cm}^{3}\right)$ containing water ($6.0 \mathrm{~cm}^{3}$) for 3 h and the mixture was worked up to give the acid $6 \mathrm{~b}(7.10 \mathrm{~g}, 94 \%)$ as an oil, $\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3165(\mathrm{OH})$ and $1748(\mathrm{CO}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.81-2.67(18 \mathrm{H}, \mathrm{m}$, menthyl H), 3.89 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.55-4.94 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}$), 7.14 $(2 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{ArH}), 7.73(1 \mathrm{H}, \mathrm{t}, J 5.3, \mathrm{ArH})$ and $11.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, OH).
2-tert-Butylphenyl 2-[(-)-menthoxy]-3-methoxybenzoate 10b. 2-[(- -Menthoxy]-3-methoxybenzoyl chloride 9b prepared from the acid $\mathbf{6 b}(5.10 \mathrm{~g}, 16.6 \mathrm{mmol})$ was treated with a solution of 2-tert-butylphenol ($5.00 \mathrm{~g}, 33.3 \mathrm{mmol}$) in benzene ($50 \mathrm{~cm}^{3}$)-pyridine ($6.5 \mathrm{~cm}^{3}$) in the presence of 4-PPy (4.90 g , 33.1 mmol) at room temperature for 1 h . After excess of 2-tertbutylphenol had been distilled off, the residue was chromatographed on a silica gel column with hexane-benzene ($1: 2$) as the eluent to give ester $10 \mathrm{~b}(6.40 \mathrm{~g}, 88 \%$) as an oil (Found: C, 76.9 ; $\mathrm{H}, 8.7 . \mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{4}$ requires $\mathrm{C}, 76.7 ; \mathrm{H}, 8.7 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1750(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 0.74-1.78(17 \mathrm{H}, \mathrm{m}$, menthyl H), 1.36 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), 2.41-2.63(1 H, m, menthyl H), $3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.41(1 \mathrm{H}, \mathrm{td}, J 10.4$ and $4.1, \mathrm{OCH}), 7.10-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.43(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $1.8, \mathrm{ArH})$ and $7.52-7.62(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Attempted Syntheses of 2,6-Di-tert-butylphenyl 2-[(-)-Men-thoxy]benzoates.- Reaction of acid 6a with 2,6-di-tert-butyl-4-methoxyphenol. A mixture of acid $\mathbf{6 a}(2.18 \mathrm{~g}, 7.51 \mathrm{mmol})$, 2,6-di-tert-butyl-4-methoxyphenol ($1.79 \mathrm{~g}, 7.57 \mathrm{mmol}$) and TFAA ($10 \mathrm{~cm}^{3}$) was stirred at room temperature for 27 h and was then refluxed for 1 h . After the cooled mixture had been diluted with benzene ($100 \mathrm{~cm}^{3}$), $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(100 \mathrm{~cm}^{3}\right)$ was carefully added. The two layers were separated and the organic layer was washed successively with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ and water, and dried over MgSO_{4}. After the solvent had been evaporated off, the residue was recrystallized from ethanol to give ester $7 \mathrm{~b}\left(1.06 \mathrm{~g}, 38 \%\right.$) as crystals, $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3115$ (OH) and $1679(\mathrm{CO}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.32\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.30(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me})$, $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.77-8.04(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 11.03 $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.
Reaction of compound $\mathbf{8}$ with sodium (-)-menthoxide. This reaction was performed by a similar procedure to that used for the preparation of compound 5a from its analogue 4a. To sodium (-)-menthoxide obtained by the reaction of (-)menthol ($293 \mathrm{mg}, 1.87 \mathrm{mmol}$) with $\mathrm{NaH}(60 \%$ dispersion in mineral oil; $71.0 \mathrm{mg}, 1.78 \mathrm{mmol}$) were added DMF $\left(4.0 \mathrm{~cm}^{3}\right)$ and ester $8(106 \mathrm{mg}, 288 \mu \mathrm{~mol})$ and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h . PLC with hexane-benzene ($4: 1$) as the developer gave the following two products.
Ester 5 a ($42.4 \mathrm{mg}, 34 \%$) as an oil, spectral data of which were identical with those of compound 5a obtained from its analogue $4 a$.

Ester 3a ($13.7 \mathrm{mg}, 10 \%$) as crystals, $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1742$ $(\mathrm{CO}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.72-2.34(18 \mathrm{H}, \mathrm{m}$, menthyl H$), 1.33(18 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Bu}^{\mathrm{i}}\right), 2.33(6 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $4.18-4.62$ ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}\right), 6.94-7.48$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.14(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $1.8, \mathrm{ArH})$.

Asymmetric Synthesis of Biphenyl-2-carboxylates 12. General Procedure.-General procedure for Grignard reaction was similar to that described in the previous paper. ${ }^{3}$ To a solution of an ester $\mathbf{1 0}(1.00 \mathrm{mmol})$ in dry benzene $\left(3.5 \mathrm{~cm}^{3}\right)$ was added a Grignard reagent 11 which had been prepared from the corresponding aryl bromide (2.00 mmol) and magnesium turnings (80.0 mg) in dry diethyl ether or THF ($3.5 \mathrm{~cm}^{3}$) and dissolved by addition of benzene ($3.5 \mathrm{~cm}^{3}$). The mixture was stirred for 3-24 hat appropriate temperature. See Table 1 for reaction conditions and the yield of the corresponding product
12. PLC with hexane-ethyl acetate as the developer was used for purification of the products.

The following compounds were obtained by this procedure.
2-tert-Butylphenyl 2'-methoxy-6-methyl-1,1'-biphenyl-2-carboxylate 12aa. As crystals, m.p. $88.1-89.0^{\circ} \mathrm{C}$ (Found: C, $80.1 ; \mathrm{H}$, 7.1. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 80.2 ; \mathrm{H}, 7.0 \%\right) ;[\alpha]_{\mathrm{D}}^{23}+33.6(c 0.88$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1739(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.27(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t}\right), 2.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.62-6.71(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 6.87-7.51(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.93(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH})$.

2-tert-Butylphenyl 2'-methoxymethoxymethyl-6-methyl-1,1'-biphenyl-2-carboxylate 12ab. As an oil (Found: C, 77.3; H, 7.3. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{C}, 77.5 ; \mathrm{H}, 7.2 \%$) ; $[\alpha]_{\mathrm{D}}^{18}+19.1$ (c 0.64 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1747(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.29(9 \mathrm{H}, \mathrm{s}$, Bu^{t}), 2.06(3 H, s, Me), $3.23(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.52$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$), 6.52-6.61 (1 H, m, ArH), 7.02-7.55 (9 H, m, ArH) and $7.94(1 \mathrm{H}$, dd, $J 7.9$ and $1.1, \mathrm{ArH})$.

2-tert-Butylphenyl 2',6-dimethyl-1,1'-biphenyl-2-carboxylate 12ac. As an oil (Found: C, 83.5; H, 7.4. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{2}$ requires C , $83.8 ; \mathrm{H}, 7.3 \%) ;[\alpha]_{\mathrm{D}}^{23}+4.4\left(c 6.60, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1748$ $(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.29\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.06(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 6.40-6.50(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.02-7.57(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.88 ($1 \mathrm{H}, \mathrm{d}, J 7.7$, ArH).

2-tert-Butylphenyl 6-methoxy-2'-methoxymethoxymethyl-1,-1'-biphenyl-2-carboxylate 12bb. As an oil (Found: C, 74.8; H, 7.0. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 74.6 ; \mathrm{H}, 7.0 \%\right) ;[\alpha]_{\mathrm{D}}^{17}+18.8(c 1.00$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1747(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.28(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t}\right), 3.26(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.39(2 \mathrm{H}, \mathrm{q}, J 22.1$ and $\left.12.4, \mathrm{CH}_{2}\right), 4.56\left(2 \mathrm{H}, \mathrm{q}, J 11.5\right.$ and $\left.6.6, \mathrm{CH}_{2}\right), 6.48-6.58(1 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.02-7.58(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.64(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $0.9, \mathrm{ArH}$).

2-tert-Butylphenyl 6-methoxy-2'-methyl-1,1'-biphenyl-2-carboxylate 12bc. As crystals, m.p. 82.5-83.3 ${ }^{\circ} \mathrm{C}$ (Found: C, 80.3; H, 7.1. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 80.2 ; \mathrm{H}, 7.0 \%$); $[\alpha]_{\mathrm{D}}^{23}+12.7(c 1.50$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1730(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.27(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{t}\right), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.38-6.46(1 \mathrm{H}, \mathrm{m}$, ArH), 7.02-7.34 (8 H, m, ArH), $7.47(1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{ArH})$ and 7.59 (1 H , dd, J 7.7 and $1.3, \mathrm{ArH}$).

2-tert-Butylphenyl 2',4',6-trimethoxy-6'-methyl-1, 1'-biphenyl-2-carboxylate 12bd. As crystals, m.p. $140-141^{\circ} \mathrm{C}$ (Found: C, $74.5 ; \mathrm{H}, 7.1 . \mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{5}$ requires $\mathrm{C}, 74.6 ; \mathrm{H}, 7.0 \%$) $[\alpha]_{\mathrm{D}}^{21}+47.2$ (c $1.39, \mathrm{CHCl}_{3}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1741(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.28$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}$), 2.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.77(3 \mathrm{H}, \mathrm{s}$, OMe), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $6.32(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{ArH}), 6.39(1 \mathrm{H}, \mathrm{d}$, $J 2.2, \mathrm{ArH}), 6.61-6.67(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.04-7.15(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.20(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $0.6, \mathrm{ArH}), 7.28-7.36(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.46$ $(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH})$ and $7.71(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $0.8, \mathrm{ArH})$.

Determination of the Optical Purity of the Coupling Product 12. General Procedure.-To a solution of an ester $12(\sim 0.1$ mmol) in THF ($1.5 \mathrm{~cm}^{3}$) was added a suspension of LiAlH_{4} $(38.0 \mathrm{mg}, 1.00 \mathrm{mmol})$ in THF $\left(1.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for $6-12 \mathrm{~h}$. Then the mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched by successive addition of ethyl acetate $\left(2.0 \mathrm{~cm}^{3}\right)$, water $\left(2.0 \mathrm{~cm}^{3}\right)$ and $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(15 \mathrm{~cm}^{3}\right)$. After the resulting mixture had been allowed to warm to room temperature, it was extracted with diethyl ether, and the extracts were washed with water and dried over MgSO_{4}. PLC with hexane-ethyl acetate as the developer gave the 2-hydroxymethyl derivative in greater than 70% yield, which was treated with 1.5 equiv. of the acid chloride of (S)-MTPA in benzenepyridine in the presence of 3.0 mol equiv. of DMAP at room temperature for 12 h . PLC with hexane-ethyl acetate as the developer gave the MTPA ester almost quantitatively. ${ }^{1} \mathrm{H}$ NMR analysis of the sample in $\mathrm{C}_{6} \mathrm{D}_{6}$ differentiated well the methoxy signals of MTPA moieties of (S, S) - and (R, S)-ester by successive addition of $\mathrm{Eu}(\mathrm{fod})_{3} .{ }^{17}$

Determination of the Absolute Configuration of the Coupling Product 12ab.-Hydrolysis of ester 12ab to 2'-methoxy-
methoxymethyl-6-methyl-1,1'-biphenyl-2-carboxylic acid 13a. A mixture of ester $12 \mathbf{a b}(5.80 \mathrm{~g}, 13.9 \mathrm{mmol}), \mathrm{KOH}(5.00 \mathrm{~g})$, ethanol ($50 \mathrm{~cm}^{3}$) and water ($5.0 \mathrm{~cm}^{3}$) was stirred at room temperature for 6 h and worked up as mentioned for the preparation of acid 6 except that conc. HCl was added at $0^{\circ} \mathrm{C}$ to give acid 13a $(3.70 \mathrm{~g}, 93 \%)$ as a yellow oil, $[\alpha]_{\mathrm{D}}^{22}-26.8$ (c $\left.1.53, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2935(\mathrm{OH})$ and $1690(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.98$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.09(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.29(2 \mathrm{H}, \mathrm{q}, J 20.4$ and 11.0 , $\left.\mathrm{CH}_{2}\right), 4.44\left(2 \mathrm{H}, \mathrm{q}, J 26.2\right.$ and $\left.6.7, \mathrm{CH}_{2}\right), 7.03-7.53(6 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $7.71(1 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{ArH})$.

Acidic treatment of acid 13a to 1-methyl-5,7-dihydrodi-benzo[c,e]oxepin-5-one 14a. To a solution of acid 13a (3.40 g , $11.9 \mathrm{mmol})$ in THF $\left(20 \mathrm{~m}^{3}\right)$ was added $4 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(17 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature for 10 h . To it was added further $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$ and the mixture was extracted with diethyl ether. The organic layer was washed successively with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and water, and dried over MgSO_{4}. After the solvents had been evaporated off, the residue was dried in vacuo to give crude tricycle $14 \mathrm{a}(2.10 \mathrm{~g})$, a sample $(30.4 \mathrm{mg})$ of which was purified by PLC with hexane-ethyl acetate $(4: 1)$ as the eluent to give an analytical sample $(27.8 \mathrm{mg}$, 72%) as crystals, m.p. $96.5-97.3^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1708(\mathrm{CO})$; $\delta_{\mathrm{H}}(250 \mathrm{MHz}) 2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.96(2 \mathrm{H}, \mathrm{q}, J 36.0$ and 11.8 , $\left.\mathrm{CH}_{2}\right), 7.39-7.70(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.74(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH})$.

Hydrolysis of compound 14a to 2^{\prime}-hydroxymethyl-6-methyl-1,1'-biphenyl-2-carboxylic acid 15a. A mixture of crude lactone $14 \mathrm{a}(1.80 \mathrm{~g})$, $\mathrm{KOH}(2.00 \mathrm{~g})$, ethanol $\left(20 \mathrm{~cm}^{3}\right)$ and water $\left(2.0 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 8 h and worked up as mentioned for the preparation of acid 6a except that conc. HCl was added at $0^{\circ} \mathrm{C}$ to give acid $15 \mathrm{a}(1.80 \mathrm{~g}, 63 \%$ based on diether 13a) as pale yellow crystals, m.p. $129-130^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3195(\mathrm{OH})$ and $1674(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.91(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.28$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$), $6.41(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.94(1 \mathrm{H}, \mathrm{d}, J 7.3$, ArH), $7.26-7.48$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.67 ($1 \mathrm{H}, \mathrm{d}, J 7.4$, ArH).

A sample of acid $15 \mathrm{a}(14.7 \mathrm{mg}, 60.7 \mu \mathrm{~mol})$ was esterified by treatment with an excess of diazomethane in diethyl ether at room temperature to give methyl 2^{\prime}-hydroxymethyl-6-methyl-1,1'-biphenyl-2-carboxylate. Optical purity of the ester was determined to be no more than 2% e.e. by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{C}_{6} \mathrm{D}_{6}$ in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$ after conversion into the (S)-MTPA ester.

Oxidation of hydroxy acid 15a to 6-methyl-1, 1'-biphenyl-2,2'dicarboxylic acid 16 a . To a refluxing solution of acid $15 \mathrm{a}(1.60 \mathrm{~g}$, 6.60 mmol) in acetone ($100 \mathrm{~cm}^{3}$) was added dropwise aq. $\mathrm{KMnO}_{4}\left(3.10 \mathrm{~g}, 19.6 \mathrm{mmol}\right.$ in $\left.100 \mathrm{~cm}^{3}\right)$ over a period of 30 min and the mixture was refluxed for 3 h . To the cooled brown suspension were added $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{SO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ and 4 mol $\mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}\left(50 \mathrm{~cm}^{3}\right)$ to form a clear solution with evolution of SO_{2} gas. After most of the acetone had been evaporated off, the residue was dissolved in $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(150 \mathrm{~cm}^{3}\right)$ and washed with diethyl ether. The aqueous layer was acidified by addition of conc. HCl to liberate the free acid, which was extracted with diethyl ether, and this extract was washed with water and dried over MgSO_{4}. After the solvent had been evaporated off, benzene ($50 \mathrm{~cm}^{3}$) was added to the residue and the mixture was heated under reflux. After 30 min the mixture was filtered hot and the insoluble solid was dried in vacuo to give diacid 16a ($904 \mathrm{mg}, 53 \%$), m.p. $224-226^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $2995(\mathrm{OH})$ and $1688(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone) 1.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 7.09 ($1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 1.2 , ArH), $7.30-7.61$ (4 H , $\mathrm{m}, \mathrm{ArH}), 7.82(1 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{ArH}), 8.07(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH})$ and $9.60(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$.

Treatment of diacid rac-16a with (S)-bi-2-naphthol to afford cyclic diester (S,S)-16-methyl-12,21-dihydrodibenzo-[h,j]dinaphtho[2,1-b:1,2-d]-1,6-dioxacyclododecapentaene-12, 21-dione (S,S)-17a. Racemic diacid $16 a(650 \mathrm{mg}, 2.54 \mathrm{mmol})$ was heated under reflux for 3 h in thionyl dichloride $\left(15 \mathrm{~cm}^{3}\right)$ in the presence of several drops of DMF, and volatiles were then
removed under reduced pressure. The acid chloride was dissolved in benzene ($150 \mathrm{~cm}^{3}$). Also prepared was a solution of (S)-bi-2-naphthol ($740 \mathrm{mg}, 2.58 \mathrm{mmol}$) in benzene ($150 \mathrm{~cm}^{3}$). To a well stirred, boiled solution of DMAP $(611 \mathrm{mg}, 5.00 \mathrm{mmol})$ in benzene ($100 \mathrm{~cm}^{3}$)-pyridine $\left(10 \mathrm{~cm}^{3}\right)$ were added dropwise the two solutions at the same rate over a period of 1 h . After addition was complete, the mixture was refluxed for a further 1 h and was then worked up as mentioned for the preparation of ester 10a. PLC with hexane-dichloromethane (1:1) as developer gave heptacycle (S, S) $\mathbf{- 1 7 a}(120 \mathrm{mg}, 9 \%$) as crystals, m.p. $253-255^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 82.9 ; \mathrm{H}, 4.5 . \mathrm{C}_{35} \mathrm{H}_{22} \mathrm{O}_{4}$ requires C , 83.0; $\mathrm{H}, 4.4 \%$) ; $[\alpha]_{\mathrm{D}}^{20}-205.6\left(c 1.67, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $1752(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.00(2 \mathrm{H}, \mathrm{t}, J 9.2$, $\mathrm{ArH}), 7.12-7.58(12 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.67(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$ and 7.82-7.97 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Reductive cleavage of compound (S,S)-17a to (S)-2,2'-bis-(hydroxymethyl)-6-methyl-1,1'-biphenyl (S)-18a. To a solution of compound $(S, S)-17 \mathrm{a}(106 \mathrm{mg}, 209 \mu \mathrm{~mol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{LiAlH}_{4}(111 \mathrm{mg}, 2.92 \mathrm{mmol})$ portionwise at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 12 h before being cooled to $0^{\circ} \mathrm{C}$ and quenched by successive additions of ethyl acetate ($4.0 \mathrm{~cm}^{3}$), water ($2.0 \mathrm{~cm}^{3}$), and $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ ($14 \mathrm{~cm}^{3}$). After the resulting mixture had warmed to room temperature, it was extracted with diethyl ether, and the extracts were washed with water and dried over MgSO_{4}. PLC with hexane-dichloromethane ($1: 2$) as developer gave laevorotatory diol (S)-18a ($39.5 \mathrm{mg}, 83 \%$) as crystals, m.p. $108-110^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 78.85 ; \mathrm{H}, 7.05 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.9 ; \mathrm{H}, 7.1 \%$); $[\alpha]_{\mathrm{D}}^{22}$ -58.0 (c $\left.0.79, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3255(\mathrm{OH}) ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz}) 1.92(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.50(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.17-4.35(4 \mathrm{H}, \mathrm{m}$, CH_{2}) and 7.03-7.57 ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

The enantiopurity of the sample was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{C}_{6} \mathrm{D}_{6}$ in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$ after conversion into the bis-MTPA ester.
Reduction of acid 13a to 2-hydroxymethyl-2'-methoxy-methoxymethyl-6-methyl-1,1'-biphenyl 19a. Reduction of acid 13a was performed by a similar procedure to that used for bislactone (S, S)-17a. Acid $13 \mathrm{a}(241 \mathrm{mg}, 842 \mu \mathrm{~mol})$ was treated with $\mathrm{LiAlH}_{4}(160 \mathrm{mg}, 4.22 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at room temperature for 12 h . PLC with hexane-ethyl acetate (2:1) as the developer gave the alcohol 19a ($200 \mathrm{mg}, 87 \%$) as an oil, $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3410(\mathrm{OH}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.94(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.13$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.44(2 \mathrm{H}, \mathrm{q}$, $J 8.7$ and $6.7, \mathrm{CH}_{2}$) and $6.82-7.79(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

2,2'-Bis(hydroxymethyl)-6-methyl-1,1'-biphenyl 18a from mono-alcohol 19a. To a solution of compound 19a ($193 \mathrm{mg}, 709$ $\mu \mathrm{mol})$ in THF $\left(5.0 \mathrm{~cm}^{3}\right)$ was added $6 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(3.0 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature for 40 h . Water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the mixture was extracted with diethyl ether. The organic layer was washed with brine and dried over MgSO_{4}. After the solvents had been evaporated off, the residue was purified by PLC with hexane-ethyl acetate ($7: 3$) to give diol 18a ($120 \mathrm{mg}, 74 \%$) as crystals, m.p. $97.5-98.7 ;[\alpha]_{D}^{22}-39.2$ (c 2.46, CHCl_{3}).
The negative sign of the specific rotation of the sample indicated its axial chirality to be S. Thus, the axial chirality of the coupling product 12ab was determined to be S.

Determination of the Absolute Configuration of the Coupling Product 12ac.-Reduction of acid (S)-13a to (S)-2-hydroxy-methyl-2',6-dimethyl-1,1'-biphenyl (S)-20a. Acid 13a, whose axial chirality was determined to be S by the above procedure, was used for this transformation. A suspension of palladium on carbon ($10 \mathrm{w} / \mathrm{w} \%, 100 \mathrm{mg}$) in ethanol $\left(1.0 \mathrm{~cm}^{3}\right)$ was stirred at room temperature under hydrogen for 1 h . To this mixture was added a solution of acid 13 a ($110 \mathrm{mg}, 384 \mu \mathrm{~mol}$) in ethanol $\left(1.0 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature. The reaction was monitored by TLC, and another suspension of
palladium on carbon (50.0 mg) in ethanol $\left(1.0 \mathrm{~cm}^{3}\right)$ was added every 4 h . After 24 h , the catalyst was filtered off, the filtrate was evaporated, and the residue was dried in vacuo to give an oil, which was dissolved in THF $\left(10 \mathrm{~cm}^{3}\right)$. To this solution was added $\mathrm{LiAlH}_{4}(210 \mathrm{mg}, 5.53 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 10 h . After the same work-up as mentioned for bis-lactone (S, S)-17a, PLC with hexane-ethyl acetate (2:1) gave laevorotatory alcohol (S) -20a ($28.5 \mathrm{mg}, 35 \%$) as an oil, $[\alpha]_{\mathrm{D}}^{20}-6.6$ (c $\left.1.00, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3335$ $(\mathrm{OH}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.96(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.97$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 4.28 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$) and 6.98-7.55 ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
Optical purity of the sample was determined to be 50% e.e. by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{C}_{6} \mathrm{D}_{6}$ in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$ after conversion into the MTPA ester. This means that at least 17% racemization had occurred during the hydrogenolysis as evidenced by comparison with the result in Table 1 (entry 2).
2-Hydroxymethyl-2',6-dimethyl-1,1'-biphenyl 20a from the coupling product 12ac. Reduction of compound 12ac was performed by the general procedure used for determination of the optical purity of coupling products $\mathbf{1 2}$, to give compound (-)-20a as an oil (Found: C, 84.95; H, 7.7. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$ requires $\mathrm{C}, 84.9 ; \mathrm{H}, 7.6 \%) ;[\alpha]_{\mathrm{D}}^{23}-2.2\left(c 4.70, \mathrm{CHCl}_{3}\right)$.

The negative sign of the specific rotation of the sample indicated its axial chirality to be S. Thus, the axial chirality of the coupling product 12ac was determined to be S.

Determination of the Absolute Configuration of the Coupling Product 12bb.-The same procedure as mentioned for the analogue 12ab was employed unless otherwise noted.

Hydrolysis of coupling product 12bb to 6-methoxy-2'-methoxymethoxymethyl-1,1'-biphenyl-2-carboxylic acid 13b. Starting from coupling product 12 bb ($5.40 \mathrm{~g}, 12.4 \mathrm{mmol}$), compound 13 b ($3.50 \mathrm{~g}, 93 \%$) was obtained as a pale yellow oil, $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2950(\mathrm{OH})$ and $1699(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 3.10$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.28-4.58\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 7.04-7.55 ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $9.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$.

Acidic treatment of compound 13b to give 1-methoxy-5,7dihydrodibenzo[c,e] oxepin-5-one 14b. Starting from compound $13 \mathrm{~b}(3.20 \mathrm{~g}, 10.6 \mathrm{mmol})$, crude lactone $14 \mathrm{~b}(3.80 \mathrm{~g})$ was obtained, a sample (38.5 mg) of which was purified by PLC to give an analytical sample ($22.0 \mathrm{mg}, 85 \%$) as crystals, m.p. $147^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1708(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.97$ $\left(2 \mathrm{H}, \mathrm{q}, J 37.5\right.$ and $\left.11.9, \mathrm{CH}_{2}\right), 7.20(1 \mathrm{H}$, dd, $J 7.8$ and $1.4, \mathrm{ArH}$), $7.34-7.58(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.84 ($1 \mathrm{H}, \mathrm{dd}, J 6.4 \mathrm{and} 1.8$, ArH).

Hydrolysis of lactone 14b to 2'-hydroxymethyl-6-methoxy-1,1'-biphenyl-2-carboxylic acid 15b. Starting from crude lactone $14 \mathrm{~b}(3.6 \mathrm{~g})$, compound $15 \mathrm{~b}(2.10 \mathrm{~g}, 77 \%$ based on acid 13 bb) was obtained as crystals, m.p. $145-146{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3020$ (OH) and $1702(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right]$ acetone $) 3.70(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 4.40\left(2 \mathrm{H}, \mathrm{q}, J 16.0\right.$ and $\left.12.6, \mathrm{CH}_{2}\right), 6.97(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $1.5, \mathrm{ArH})$ and $7.20-7.58(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
The sample was found to be a racemic modification by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{C}_{6} \mathrm{D}_{6}$ in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$ after conversion into the MTPA ester of methyl 2^{\prime}-hydroxymethyl-6-methoxy-1,1'-biphenyl-2-carboxylate, which had been prepared from acid $15 \mathrm{~b}(23.1 \mathrm{mg}, 89.4 \mu \mathrm{~mol})$.

Oxidation of acid 15b to 6-methoxy-1,1'-biphenyl-2,2'-dicarboxylic acid 16b. Starting from hydroxy acid $\mathbf{1 5 b}(2.00 \mathrm{~g}, 7.74$ mmol), diacid $\mathbf{1 6 b}(800 \mathrm{mg}, 38 \%$) was obtained as crystals, m.p. $217-219^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3005(\mathrm{OH})$ and $1687(\mathrm{CO}) ; \delta_{\mathrm{H}}(250$ MHz ; ${ }^{2} \mathrm{H}_{6}$]acetone) $3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $7.11(1 \mathrm{H}, \mathrm{d}, J 7.3$, $\mathrm{ArH}), 7.20(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 7.40(2 \mathrm{H}, \mathrm{t}, J 8.5, \mathrm{ArH}), 7.53(2 \mathrm{H}$, $\mathrm{t}, J 8.5, \mathrm{ArH}), 8.03(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{ArH})$ and $10.81(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$.

Treatment of diacid rac-16b with (S)-bi-2-naphthol to give cyclic diester (R,S)-16-methoxy-12,21-dihydrodibenzo[h, $]$ di-naphtho[2,1-b: 1,2-d]-1,6-dioxacyclododecapentaene-12,21-dione (R,S)-17b. Starting from diacid rac-16b ($600 \mathrm{mg}, 2.20 \mathrm{mmol}$), bis-lactone (R, S)-17b ($253 \mathrm{mg}, 22 \%$) was obtained as crys-
tals, m.p. $282-283{ }^{\circ} \mathrm{C}$ (Found: C, 80.5; $\mathrm{H}, 4.2 . \mathrm{C}_{35} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{C}, 80.45 ; \mathrm{H}, 4.2 \%$) ; $[\alpha]_{\mathrm{D}}^{20}-237\left(c 1.01, \mathrm{CHCl}_{3}\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1748(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.98(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 7.05-7.59(12 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.66(1 \mathrm{H}, \mathrm{d}$, J 7.7, ArH) and 7.82-7.96 (4 H, m, ArH).

Reductive cleavage of bis-lactone (R, S)-17b to (R)-2,2'-bis-(hydroxymethyl)-6-methoxy-1,1'-biphenyl (R)-18b. Starting from bis-lactone $(R, S)-17 \mathrm{~b}(153 \mathrm{mg}, 293 \mu \mathrm{~mol})$, laevorotatory diol (R)-18b ($62.8 \mathrm{mg}, 88 \%$) was obtained as crystals after PLC with hexane-ethyl acetate (2:1) as developer, m.p. $110-112^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 73.9 ; \mathrm{H}, 6.7 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.75 ; \mathrm{H}, 6.6 \%$); $[\alpha]_{\mathrm{D}}^{20}-65.1 \quad\left(c \quad 0.43, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3210(\mathrm{OH}) ;$ $\delta_{\mathrm{H}}(250 \mathrm{MHz}) 2.76(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.20-4.38$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.93(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$ and $7.05-7.55(6 \mathrm{H}, \mathrm{m}$, ArH).

Reduction of acid 13b to 2-hydroxymethyl-6-methoxy-2'-methoxymethoxymethyl-1,1'-biphenyl 19b. Starting from acid 13b ($252 \mathrm{mg}, 834 \mu \mathrm{~mol}$), compound 19 b ($221 \mathrm{mg}, 92 \%$) was obtained as an oil, $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3425(\mathrm{OH}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz})$ $2.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.10(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.26$ $\left(2 \mathrm{H}, \mathrm{q}, J 22.7\right.$ and $\left.11.9, \mathrm{CH}_{2}\right), 4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.44(2 \mathrm{H}, \mathrm{q}$, $J 32.2$ and $\left.6.7, \mathrm{CH}_{2}\right), 6.91(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH})$ and $7.09-7.53$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

2,2'-Bis(hydroxymethyl)-6-methoxy-1,1'-biphenyl 18b from mono-alcohol 19b. Starting from 19b ($188 \mathrm{mg}, 652 \mu \mathrm{~mol}$), compound 18 b ($126 \mathrm{mg}, 79 \%$) was obtained as crystals, m.p. $96.2-98.0^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-53.2\left(c 0.57, \mathrm{CHCl}_{3}\right)$.

The negative sign of the specific rotation of the sample indicated its axial chirality to be R. Thus, the axial chirality of the coupling product $\mathbf{1 2 b b}$ was determined to be R.

Determination of the Absolute Configuration of the Coupling Product 12bc.-The same procedure as mentioned for coupling product 12ac was employed unless otherwise noted.

Reduction of acid $(\mathrm{R})-13 \mathrm{~b}$ to (R)-2-hydroxymethyl-6-methoxy-2'-methyl-1, 1'-biphenyl (R)-20b. Starting from acid 13b (151 mg, $499 \mu \mathrm{~mol}$), laevorotatory alcohol (R)-20b ($34.3 \mathrm{mg}, 30 \%$) was obtained as an oil, $[\alpha]_{\mathrm{D}}^{20}-25.0\left(c 1.01, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1}$ $3265(\mathrm{OH}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.93(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH})$, $7.04-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.38(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH})$.

Optical purity of the sample was determined to be 62% e.e. by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{C}_{6} \mathrm{D}_{6}$ in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$ after conversion into the MTPA ester. This means that at least 13% racemization had occurred during the hydrogenolysis as evidenced by comparison with the result in Table 1 (entry 4).

2-Hydroxymethyl-6-methoxy-2'-methyl-1,1'-biphenyl 20b
from the coupling product $\mathbf{1 2 b c}$. Starting from compound $\mathbf{1 2 b c}$ $(123 \mathrm{mg}, 328 \mu \mathrm{~mol})$, the alcohol 20b $(65.1 \mathrm{mg}, 87 \%$) was obtained as an oil (Found: C, $78.7 ; \mathrm{H}, 7.2 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.9 ; \mathrm{H}, 7.1 \%) ;[\alpha]_{\mathrm{D}}^{23}-20.1\left(c 0.8, \mathrm{CHCl}_{3}\right)$.

The negative sign of the specific rotation of the sample indicated its axial chirality to be R. Thus, the axial chirality of the coupling product $\mathbf{1 2 b c}$ was determined to be R.

Determination of the Absolute Configuration of the Coupling Product 12bd.—Dibromination of compound 12bd to give 2-tertbutylphenyl 3'-bromo-6'-bromomethyl-2',4',6-trimethoxy'-1,1'-biphenyl-2-carboxylate 21. To a solution of compound $\mathbf{1 2 b d}$ $(4.30 \mathrm{~g}, 9.90 \mathrm{mmol})$ in $\mathrm{CCl}_{4}\left(100 \mathrm{~cm}^{3}\right)$ were added NBS $(7.30 \mathrm{~g}$, $41.0 \mathrm{mmol})$ and dibenzoyl peroxide (BPO) $(240 \mathrm{mg}, 991 \mu \mathrm{~mol})$, and the mixture was refluxed for 5 h . After the mixture had cooled to room temperature, precipitates were filtered off and the filtrate was evaporated to dryness. Chromatography on a silica gel column with hexane-ethyl acetate ($4: 1$) as the eluent gave dibromide $21(5.10 \mathrm{~g}, 87 \%)$ as crystals, m.p. $91.2-92.8^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 54.8 ; \mathrm{H}, 4.8 ; \mathrm{Br}, 26.7 . \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{O}_{5}$ requires C , $54.75 ; \mathrm{H}, 4.8 ; \mathrm{Br}, 27.0 \%$); $[\alpha]_{\mathrm{D}}^{21}+22.8$ (c $2.00, \mathrm{CHCl}_{3}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1739(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 1.31\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 3.66$
($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.34(2 \mathrm{H}$, $\mathrm{q}, J 21.0$ and $\left.9.8, \mathrm{CH}_{2}\right), 6.48(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.79(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and 2.1, ArH), 7.06-7.19 (2 H, m, ArH), $7.26(1 \mathrm{H}, \mathrm{td}, J 3.7$ and $0.9, \mathrm{ArH}), 7.35(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $2.4, \mathrm{ArH}), 7.56(1 \mathrm{H}, \mathrm{t}, J 8.1$, $\mathrm{ArH})$ and $7.90(1 \mathrm{H}, \mathrm{dd}, J 7.9$ and $0.9, \mathrm{ArH})$.

Hydrolysis of dibromide 21 to 3'-bromo-6'-hydroxymethyl$2^{\prime}, 4^{\prime}, 6$-trimethoxy-1, 1^{\prime}-biphenyl-2-carboxylic acid 22. A mixture of dibromide $21(4.50 \mathrm{~g}, 7.60 \mathrm{mmol}), \mathrm{KOH}(20.0 \mathrm{~g})$, ethanol (200 cm^{3}) and water ($20 \mathrm{~cm}^{3}$) was stirred at room temperature for 20 h and worked up as mentioned for the preparation of acid 6a except that conc. HCl was added at $0^{\circ} \mathrm{C}$ to give hydroxy acid 22 $(2.50 \mathrm{~g}, 83 \%)$ as crystals, m.p. $176-177^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3150$ (OH) and $1720(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}\right.$; ${ }^{2} \mathrm{H}_{6}$]acetone) $2.91(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{OH}), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.96(3 \mathrm{H}, \mathrm{s}$, OMe), $4.43\left(2 \mathrm{H}, \mathrm{q}, J 83.6\right.$ and $\left.10.9, \mathrm{CH}_{2}\right), 6.78(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $7.27(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 2.1, ArH) and $7.41-7.52(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Esterification of acid $\mathbf{2 2}$ to methyl 3'-bromo-6'-hydroxymethyl$2^{\prime}, 4^{\prime}, 6$-trimethoxy-1,1'-biphenyl-2-carboxylate 23 . To a solution of acid $22(2.00 \mathrm{~g}, 5.03 \mathrm{mmol})$ in dry DMF $\left(70 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaHCO}_{3}(423 \mathrm{mg}, 5.04 \mathrm{mmol})$ and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . To the cooled mixture was added iodomethane ($620 \mathrm{~mm}^{3}, 9.96 \mathrm{mmol}$) and the resulting mixture was stirred at room temperature for 16 h . It was poured into $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ and extracted with ethyl acetate. The extracts were washed successively with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}, 1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{Na}_{2} \mathrm{SO}_{3}$, and water, and dried over MgSO_{4}. After volatiles were evaporated off, the residue was chromatographed on a silica gel column with hexane-ethyl acetate $(2: 1)$ as the eluent to give ester 23 $\left(1.50 \mathrm{~g}, 72 \%\right.$) as crystals, m.p. $189^{\circ} \mathrm{C}$ (Found: C, 52.85 ; H, 4.75 ; $\mathrm{Br}, 19.7 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrO}_{6}$ requires $\left.\mathrm{C}, 52.6 ; \mathrm{H}, 4.7 ; \mathrm{Br}, 19.4 \%\right) ;[\alpha]_{\mathrm{D}}^{18}$ $+48.4\left(c 0.62, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3475(\mathrm{OH})$ and 1719 $(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 2.67(1 \mathrm{H}$, br s, OH$), 3.66(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.72$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.44(2 \mathrm{H}, \mathrm{q}, J 36.2$ and 11.4 , $\left.\mathrm{CH}_{2}\right), 6.53(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.15(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{t}$, $J 7.8, \mathrm{ArH})$ and $7.52(1 \mathrm{H}$, dd, $J 7.8$ and $1.0, \mathrm{ArH})$.

Oxidation of hydroxy ester 23 to methyl 3'-bromo-6'-formyl$2^{\prime}, 4^{\prime}, 6$-trimethoxy-1,1'-biphenyl-2-carboxylate 24. A solution of compound $23(1.40 \mathrm{~g}, 3.40 \mathrm{mmol})$ and PCC $(1.10 \mathrm{~g}, 5.10 \mathrm{mmol})$ in dichloromethane ($30 \mathrm{~cm}^{3}$) was stirred at room temperature for 6 h . The mixture was poured into $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ and extracted with diethyl ether. The extracts were washed with water and dried over MgSO_{4}. After the solvents had been evaporated off, the residue was chromatographed on a silica gel column with hexane-ethyl acetate $(4: 1)$ as the eluent to give compound $24(1.00 \mathrm{~g}, 72 \%)$ as crystals, m.p. $195-197^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1709(\mathrm{CO}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}) 3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.70(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.72(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.09$ $(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH}), 7.41(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH}), 7.61(1 \mathrm{H}, \mathrm{d}, J 7.8$, $\mathrm{ArH})$ and 10.09 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$).

Oxidation of aldehyde 24 to 2^{\prime}-methyl 2-hydrogen 5-bromo-$4,6,6^{\prime}$-trimethoxy-1, 1'-biphenyl-2,2'-dicarboxylate 25 . A solution of $\mathrm{KMnO}_{4}(1.00 \mathrm{~g}, 6.33 \mathrm{mmol})$ in water $\left(50 \mathrm{~cm}^{3}\right)$ was added at $50^{\circ} \mathrm{C}$ to a stirred solution of compound $24(881 \mathrm{mg}, 2.15 \mathrm{mmol})$ in acetone $\left(50 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 2 h at $50^{\circ} \mathrm{C}$. To the cooled brown suspension were added $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ of $\mathrm{Na}_{2} \mathrm{SO}_{3}\left(30 \mathrm{~cm}^{3}\right)$ and $4 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}\left(50 \mathrm{~cm}^{3}\right)$ to form a clear solution. After most of the acetone had been evaporated off, the residue was dissolved in $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}\left(100 \mathrm{~cm}^{3}\right)$ and washed with diethyl ether. The aqueous layer was acidified by addition of conc. HCl at $0^{\circ} \mathrm{C}$ to liberate the free acid, which was extracted with ethyl acetate, and the extract was washed with water and dried over MgSO_{4}. After the solvent had been evaporated off, the residue was dried in vacuo to give compound $25(549 \mathrm{mg}, 60 \%$) as crystals, m.p. $202-204^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2950(\mathrm{OH}), 1728$ and $1705(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right]$ acetone $) 3.59(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.69$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.99(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.61(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{OH}), 6.85(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.22(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $1.2, \mathrm{ArH}), 7.41$ $(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH})$ and $7.50(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 1.3 , ArH).

Hydrolysis of mono-ester 25 to 5-bromo-4,6,6'-trimethoxy-$1,1^{\prime}$-biphenyl-2,2'-dicarboxylic acid 26. A mixture of partial ester $25(502 \mathrm{mg}, 1.18 \mathrm{mmol}), \mathrm{KOH}(710 \mathrm{mg})$, ethanol $\left(10 \mathrm{~cm}^{3}\right)$ and water $\left(1 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 12 h and worked up as mentioned for the preparation of acid $\mathbf{6 a}$ except that conc. HCl was added at $0^{\circ} \mathrm{C}$ and the liberated acid was extracted with ethyl acetate to give crude diacid 26 (340 mg , 70%) as yellow crystals, $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}\right.$; $\left.{ }^{2} \mathrm{H}_{6}\right]$ acetone $) 3.69(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe})$, 3.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 5.12 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.23(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and $1.2, \mathrm{ArH}), 7.42$ $(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{ArH})$ and $7.54(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.0, \mathrm{ArH})$.

Treatment of diacid 26 with (R)-bi-2-naphthol to cyclic diester (R, R)-15-bromo-14,16,17-trimethoxy-12,21-dihydrodibenzo[$\mathrm{h}, \mathrm{j}]$ dinaphtho[2,1-b:1,2-d]-1,6-dioxacyclododecapentaene-12,-21-dione (R, R)-27. This transformation was performed by the same procedure as mentioned for compound 16a except that crude product was purified by chromatography on a silica gel column with hexane-ethyl acetate ($3: 1$) as the eluent. Starting from diacid 26 ($340 \mathrm{mg}, 827 \mu \mathrm{~mol}$) and (R)-bi-2-naphthol (238 $\mathrm{mg}, 831 \mu \mathrm{~mol})$ the heptacycle (R, R)-27 ($192 \mathrm{mg}, 35 \%$) was obtained as crystals, m.p. $220^{\circ} \mathrm{C}$ (Found: C, 67.2; H, 3.8; Br, 12.2. $\mathrm{C}_{3}{ }_{7} \mathrm{H}_{25} \mathrm{BrO}_{7}$ requires $\mathrm{C}, 67.2 ; \mathrm{H}, 3.8 ; \mathrm{Br}, 12.1 \%$); $[\alpha]_{\mathrm{D}}^{20}$ $+315\left(c \quad 0.92, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1754(\mathrm{CO}) ; \delta_{\mathrm{H}}(250$ MHz) 3.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.78 ($6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.59(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $6.84(2 \mathrm{H}, \mathrm{t}, J 8.2, \mathrm{ArH}), 7.03-7.43$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.49 ($1 \mathrm{H}, \mathrm{d}$, $J 8.9, \mathrm{ArH})$ and $7.83-8.01(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Reductive cleavage of diester (R, R)-27 to (R)-3-bromo-2', 6 -bis(hydroxymethyl)-2,4,6'-trimethoxy-1,1'-biphenyl (R)-28. To a solution of diester $(R, R)-27(143 \mathrm{mg}, 216 \mu \mathrm{~mol})$ in THF (10 cm^{3}) was added $\mathrm{LiAlH}_{4}(90.3 \mathrm{mg}, 2.38 \mathrm{mmol})$ portionwise at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 10 h . After the same work-up as mentioned for diester (S, S)-17a, except that ethyl acetate was used for extraction, PLC with hexane-ethyl acetate ($1: 1$) as the developer gave dextrorotatory $\operatorname{diol}(R)-28(67.8 \mathrm{mg}, 82 \%)$ as crystals, m.p. $187-189^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}$ $+59.0(c 0.80, \mathrm{THF}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3370(\mathrm{OH}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; [${ }^{2} \mathrm{H}_{6}$] acetone) $3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.98(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 4.09-4.29\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and OH$), 4.40-4.58(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.00(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}), 7.13(1 \mathrm{H}, \mathrm{d}$, $J 7.0, \mathrm{ArH})$ and $7.36(1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{ArH})$.
3-Bromo-2',6-bis(hydroxymethyl)-2,4,6'-trimethoxy-1,1'-biphenyl 28 from acid 22. In the same way as mentioned for diester $(R, R)-27$, treatment of acid $22(163 \mathrm{mg}, 410 \mu \mathrm{~mol})$ with LiAlH_{4} ($150 \mathrm{mg}, 3.95 \mathrm{mmol}$) in THF $\left(10 \mathrm{~cm}^{3}\right)$ at room temperature for 12 h gave diol 28 ($143 \mathrm{mg}, 91 \%$), m.p. $184-185^{\circ} \mathrm{C}$ (Found: C, $53.5 ; \mathrm{H}, 5.0 ; \mathrm{Br}, 20.7 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{5}$ requires $\mathrm{C}, 53.3 ; \mathrm{H}, 5.0 ; \mathrm{Br}$, 20.85%); $[\alpha]_{\mathrm{D}}^{20}+53.6(c 0.84, \mathrm{THF})$.

The positive sign of the specific rotation of the sample indicated its axial chirality to be R. Thus, the axial chirality of the coupling product $\mathbf{1 2 b d}$ was determined to be R.

Acknowledgements

This work was supported in part by Sumitomo Seika Chemicals Co., Ltd.

References

1 Reviews: G. Bringmann, R. Walter and R. Weirich, Angew. Chem., Int. Ed. Engl., 1990, 29, 977; H.-J. Altenbach, in Organic Synthesis Highlights, ed. J. Mulzer, H.-J. Altenbach, M. Braun, K. Krohn and H.-U. Reissig, VCH, Weinheim, 1991, pp. 181-185; M. Sainsbury, Tetrahedron, 1980, 36, 3327.
2 Recent examples: M. Takahashi, T. Ogiku, K. Okamura, T. Da-te, H. Ohmizu, K. Kondo and T. Iwasaki, J. Chem. Soc., Perkin Trans. 1, 1993, 1473; B. H. Lipshutz, K. Siegmann, E. Carcia and F. Kayser, J. Am. Chem. Soc., 1993, 115, 9276; J. M. Saá and G. Martorell, J. Org. Chem., 1993, 58, 1963; S. Sengupta, M. Leite, D. S. Raslan, C. Quesnelle and V. Snieckus, J. Org. Chem., 1992, 57, 4066; U. Lauk, D. Dürst and W. Fischer, Tetrahedron Lett., 1991, 32, 65.

3 T. Hattori, H. Hotta, T. Suzuki and S. Miyano, Bull. Chem. Soc. Jpn., 1993, 66, 613.
4 A. I. Meyers and K. A. Lutomski, J. Am. Chem. Soc., 1982, 104, 879; J. M. Wilson and D. J. Cram, J. Org. Chem., 1984, 49, 4930; T. Hayashi, K. Hayashizaki, T. Kiyoi and Y. Ito, J. Am. Chem. Soc., 1988, 110, 8153; M. Shindo, K. Koga and K. Tomioka, J. Am. Chem. Soc., 1992, 114, 8732; J. Brussee, J. L. G. Groenendijk, J. M. te Koppele and A. C. A. Jansen, Tetrahedron, 1985, 41, 3313; M. Smrčina, J. Poláková, S. Vyskočil and P. Kočovský, J. Org. Chem., 1993, 58, 4534.
5 (a) S. Miyano, H. Fukushima, S. Handa, H. Ito and H. Hashimoto, Bull. Chem. Soc. Jpn., 1988, 61, 3249; (b) K. S. Feldman and S. M. Ensel, J. Am. Chem. Soc., 1993, 115, 1162; (c) G. Bringmann, J. R. Jansen and H.-P. Rink, Angew. Chem., Int. Ed. Engl., 1986, 25, 913; (d) M. Tanaka, C. Mukaiyama, H. Mitsuhashi and T. Wakamatsu, Tetrahedron Lett., 1992, 33, 4165; (e) K. Tomioka, Y. Kubota, H. Kawasaki and K. Koga, Tetrahedron Lett., 1989, 30, 2949; (f) A. Pelter, R. S. Ward, R. Venkateswarlu and C. Kamakshi, Tetrahedron, 1991, 47, 1275; (g) D. A. Evans and C. J. Dinsmore, Tetrahedron Lett., 1993, 34, 6029.
6 S. Miyano, M. Tobita, S. Suzuki, Y. Nishikawa and H. Hashimoto, Chem. Lett., 1980, 1027; T. D. Nelson and A. I. Meyers, Tetrahedron Lett., 1993, 34, 3061.
7 B. Feringa and H. Wynberg, J. Org. Chem., 1981, 46, 2547; J. M. Bobbitt, I. Noguchi, H. Yagi and K. H. Weisgraber, J. Org. Chem., 1976, 41, 845; S. H. Goh, N. F. Hew and M. Lee, Tetrahedron Lett., 1992, 33, 4613.
8 M. Reuman and A. I. Meyers, Tetrahedron, 1985, 41, 837.
9 A.I.Meyers and R.J.Himmelsbach, J. Am. Chem. Soc., 1985, 107,682.
10 H. Moorlag and A. I. Meyers, Tetrahedron Lett., 1993, 34, 6989; 6993; A. I. Meyers, A. Meier and D. J. Rawson, Tetrahedron Lett., 1992, 33, 853; A. I. Meyers, J. R. Flisak and R. A. Aitken, J. Am. Chem. Soc., 1987, 109, 5446; A. M. Warshawsky and A. I. Meyers, J. Am. Chem. Soc., 1990, 112, 8090.

11 R. S. Ward, Tetrahedron, 1990, 46, 5029; R. Glaser and M. A. Bernstein, J. Chem. Soc., Perkin Trans. 2, 1991, 2047; A. V. R. Rao, T. K. Chakraborty and S. P. Joshi, Tetrahedron Lett., 1992, 33, 4045.

12 Recent examples: D. Lew and I. Amer, Tetrahedron: Asymm., 1993, 4, 2147; K. Yoshikawa, N. Yamamoto, M. Murata, K. Awano, T. Morimoto and K. Achiwa, Tetrahedron: Asymm., 1992, 3, 13; E. Weber, K. Skobridis, A. Wierig, S. Stathi, L. R. Nassimbeni and M. L. Niven, Angew. Chem., Int. Ed. Engl., 1993, 32, 606; D. Rawson and A. I. Meyers, J. Chem. Soc., Chem. Commun., 1992, 494; S. Kanoh, H. Muramoto, K. Maeda, N. Kawaguchi, M. Motoi and H. Suda, Bull. Chem. Soc. Jpn., 1988, 61, 2244; Y. Murakami, J. Kikuchi, J.-J. Lee, K. Uchimura and C. Hioki, Chem. Lett., 1987, 1481.

13 C. Rosini, L. Franzini, A. Raffaelli and P. Salvadori, Synthesis, 1992, 503.

14 T. Hattori, S. Satoh and S. Miyano, Bull. Chem. Soc. Jpn., 1993, 66, 3840.

15 T. Hattori, T. Suzuki, N. Hayashizaka, N. Koike and S. Miyano, Bull. Chem. Soc. Jpn., 1993, 66, 3034.
16 T. Hattori, N. Koike and S. Miyano, presented in part at the 50th Anniversary International Symposium on Organic Synthesis, Tokyo, August, 1992.
17 K. Kabuto, F. Yasuhara and S. Yamaguchi, Tetrahedron Lett., 1980, 21, 307; 1981, 22, 659.
18 K. Mislow, M. A.W. Glass, R. E. O'Brien, P. Rutkin, D. H. Steinberg, J. Weiss and C. Djerassi, J. Am. Chem. Soc., 1962, 84, 1455; H. Akimoto and S. Yamada, Tetrahedron, 1971, 27, 5999.

19 See also: K. Yamamoto, H. Yumioka, Y. Okamoto and H. Chikamatsu, J. Chem. Soc., Chem. Commun., 1987, 168.

20 G. Bringmann, T. Hartung, L. Göbel, O. Schupp, K. Peters and H. G. von Schnering, Liebigs Ann. Chem., 1992, 769.

21 S. Oi, K. Matsunaga, T. Hattori and S. Miyano, Synthesis, 1993, 895.
22 See also: M. Kaino, K. Ishihara and H. Yamamoto, Bull. Chem. Soc. Jpn., 1989, 62, 3736.
23 A. F. Kluge, K. G. Untch and J. H. Fried, J. Am. Chem. Soc., 1972, 94, 7827.
24 G. Büchi, D. H. Klaubert, R. C. Shank, S. M. Weinreb and G. N. Wogan, J. Org. Chem., 1971, 36, 1143.

25 J. G. Cannon, D. L. Koble, J. P. Long and T. Verimer, J. Med. Chem., 1980, 23, 750.

Paper 4/01557F
Received 15th March 1994
Accepted 18th April 1994

[^0]: \dagger Several highly stereoselective asymmetric syntheses of axially chiral binaphthyls have been developed in the last decade. ${ }^{3,4}$

